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A mathematical model is proposed for the liberation of the gas component in two- 
phase systems with vibrational perturbation, and an algorithm for the numerical 
integration of this model is presented. 

In [1-6], the results of investigations of the phase interaction in nonsteady fluxes of 
slightly concentrated suspensions of small spheres were presented. An earlier work [7] de- 
monstrated the laws governing the propagation of ~harmonic oscillations in two-phase systems, 
where the relative velocity of air-bubble motion was taken from the Stokes formula. A two- 
phase system in which one component is a liquid and the other a gas was modeled in the form 
of an elastic--viscous continuous medium with air bubbles being liberated under vibration. 

In the present work, an attempt is made to develop a mathematical model of the diffu- 
sion of the gas component from two-phase systems in the atmosphere under asymmetric vibra- 
tional perturbations. The use of asymmetric (e.g., vibroshock, multifrequency) oscillations 
allows the technological reprocessing of disperse materials to be sharply intensified [8, 9]. 
Change in the particle concentration of the gas phase under vibrations of the medium may be 
represented in the form of the Einstein--Kolmogorov equations [i0]. It is assumed that the 
Reynolds number is small, and the bubbles are spherical in form, while the change in pres- 
sure in the liquid phase due to bubble motion does not change its shape, i.e., its diameter 
remains constant. In addition, it is assumed that the boundary layer does not break away 
from the bubble surface, and the gas motion inside the bubble has no effect on the motion of 
the liquid phase [Ii]. 

The equation of motion of a bubble in a viscous medium takes the form 

PT V dv d~--- p'gV + (g + a)pV--3~d~(v--u)--KadoV-'d(v u) (1) 
dt ' 

where Kad is the added-mass factor (Kad = 0.5) [12, 13]. 

Since PT/P ~0, denoting the relative velocity of the vibrated air bubble by v b = v -- u, 
Eq. (i) takes the form 

dv b Kad - ~ -  + ~(w)vb= g +  a, (2) 
where  ~ = 1 8 v / ( 1  -- w)d ~ i s  t he  d r a g  c o e f f i c i e n t  o f  t he  t w o - p h a s e  medium. 

The m a t h e m a t i c a l  model  o f  t he  g a s c o m p o n e n t  o f  t h e  c e n t r a l ,  a x i s y r a m e t r i c  l a y e r  f o r  a 
p l a n e  p rob lem t a k e s  t h e  form 

aw aw a~ 
- - = - - v  b + D -  
at ~ ax2 ' (3) 

Ka d dVb 

where the relative velocity of the air bubble depends on the particle concentration of the 
gas component, while the dependence of the diffusion coefficient on the parameters of the vi- 
brational perturbation and the rheological properties of the medium is determined by means 
of numerical experiment. 
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Fig. i. Change in acceleration of vibrating plane after the period of the asym- 
metric vibrations. 

Fig. 2. Dependence of velocity of air-bubble motion on the number of integration 
steps over the time: i)~ = i00 sec-1; KadKT ~ = i00 sec-*; 2) ~ = i00 sec-1; KadKTm = 
2400 sec -I . 

The vibrations of the perturbation source are governed by the law shown in Fig. i, 
where tl is the time of impact of the vibrating plane on the stop; t2 is the time that the 
plane returns to the initial position and t~ = t2 = T = 2~/~; T is the period of the vibra- 
tion; m is the angular velocity of the vibration. In the present case, the upper limit is 
the free surface. Assuming that initially the velocity of air-bubble motion is zero over 
the entire height of the two-phase system, and also specifying the law of initial distribu- 
tion of the bulk particle concentration of the gas phase, the drag coefficient may be deter- 
mined for a given moment of time. Taking account of the value of $ obtained from the second 
relation in Eq. (3), the velocity v b of air-bubble motion for a new moment of time, depend- 
ing on the coordinate x and the time t, may be determined. The value of v b obtained is used 
in the first relation of Eq. (3) to determine the change in bulk concentration of air asso- 
ciated with the change in the velocity of bubble motion. 

Thus, the two relations in Eq. (3) are integrated together, step by step in terms of 
the coordinate and the time, until the specified residual concentration is obtained. The 
finite-difference analog of the system in Eq. (3) takes the form 

w +~t = wipo~ + w~+tP~+l + w~-lqi - l ,  (4)  

6t (g + a) + v~i 
v+~t = Kad 

ni ~St l §  
Gd 

where Poi = 1 -- 2F is the probability of motion of a particle of the gas component (concen- 
tration) from the i-th point for the given moment to the same point for the new moment; 
Pi+1 = F -- Gi+1 is the probability of motion of a particle of the gas component from the 
(i + l)-th point for the given moment to the i-th point for the new moment; qi-* = F + Gi_x 
is the probability of motion of a particle of the gas component from the (i -- l)-th point 
for the given moment to the i-th point for the new moment; F = D6t/6x=; G i = Vni6t/2~x; 
St = 2~/mKT; K T is the number of divisions in the oscillation period; 6x is the coordinate 
step, 6x = H/(Kx_I) ; K x is the number of points of the integration grid over the column 
height H. Note that the concentration is defined in accordance with the first relation in 
Eq. (4) for all points over the height except the lowest point corresponding to the bottom 
of the vibrated volume. 

The concentration at the lowest point of the integration grid may be defined by the 
formula 

w? 6' = wi (po~ + PO + w~+tpi+i, (5) 

since the particles of the gas component do not penetrate the bottomof the volume. The 
method of defining the particle concentration of the gas component is based on the theory of 
Markov processes [14], where Poi + Pi + qi = i. 
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However, it should be noted that Poi + Pi+1 + qi-~ ~=!, because of the dependence of 
the velocity of air-bubble motion on the column height (coordinate x) and the time. Since 
the theory of Markov processes entails that 

1 
Poi = 1 - -2F />0 ,  F ~  2 

pi = F - -  Gi ~ O, F >/ Gi, 

q~ ~ F + G z ~ O ,  F ~ - - G ~  

and bearing in mind that in the course of vibration the particles of the gas component are 
displaced upward, qi > Pi, i.e., the probability of upward particle motion is higher than 
that for downward motion, it is found that 

1 
--2~ ~ F ~ IGd. 

and 

It follows from this expression that 

(6) 

6x~ (7) 
2D 

iv~i I ~.~ 2___DD (8) 
6x 

The constraints in Eqs. (7) and (8) are necessary conditions for stability of the scheme 
of numerical integration of the given mathematical model, and indicate that the change in 
particle concentration of the gas component at points of the numerical scheme cannot be neg- 
ative. The distinguishing feature of asymmetric vibrations, when the upper and lower accel- 
erations of the vibrating floor may differ by (8-10)g, is that there is a change in the dens- 
ity of the two-phase system, associated not only with diffusion of the gas component but also 
with the appearance of considerable dynamic pressure in the vibrating medium. In addition, 
bubble motion in the given case is associated with a transient process whose duration de- 
pends on the drag of the medium and the parameters of the vibrational perturbation. Note al- 
so that, for a harmonic law of vibration of the bottom plane of the vibrated volume, Pimax = 
qimax and Pimin = qimin- These conditions are satisfied for amplitude values of the accel- 
eration that are equal in magnitude but opposite in sign. In the case of asymmetric vibra- 
tions, Pimax~=qimax because of the difference in upper and lower accelerations of the vibra- 
tions of the bottom plane. 

The dependence of the velocity of air-bubble motion on the number of integration steps 
over the time n t is shown in Fig. 2 for different numbers of divisions of the oscillation 
period K T = T/~t = 2~/m~t, with ~ = i00 sec -I and upper and lower accelerations a U = 5g and 
a L = g of the vibrating bottom. Analysis of the investigations shows that the time of the 
transient process depends on the parameters of the vibrational perturbation and the rheolog- 
ical properties of the medium. Note that with increase in the drag coefficient of the medi- 
um to ~ = 2.104 sec -I and above, the duration of the transient process has no significant ef- 
fect on the diffusion of the gas component. 

It is of interest to study the grouping of the air-bubble flux and the motion of its 
center of gravity in the vibration of two-phase media. Initially, with~uniform distribution 
of air bubbles, the center of gravity (CG) is in the central part of the volume's height. 
With vibration, the position of the center of gravity shifts, because of changes in the par- 
ticle concentration of the gas component over the height. The results obtained are con- 
firmed by the experimental investigations reported in [15, 16]. Investigation of the laws 
of motion of the center of gravity permits the vibration parameters and rheological parame- 
ters of the medium to be optimized so as to obtain the required density of the reprocessed 
two-phase system. Investigation shows that the center of gravity will be displaced upward 
under the condition qi -- Pi~ 0"04" 

The dependence of the distribution of the bulk particle concentration of the gas compo- 
nent on the number of points (Kx) over the column height is shown in Fig. 3. Analysis of 
the data obtained shows that when the center of gravity moves upward there is more intense 
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Fig. 3. Dependence of the distri- 
bution of the bulk particle con- 
centration of the gas component on 
the number of points over the col- 
umn height: i) center of gravity 
(CG~) falls; 2) CG2 rises. 

diffusion of the gas-component particles to the free surface (curve 2) with a monotonic in- 
crease in concentration from the vibrated plane upwards. When the center of gravity moves 
downward, the duration of the diffusion of gas-component particles increases considerably 
(curve i), which leads to insufficient density in the vibrated medium. Since liberation of 
the gas component occurs as a result of diffusion, and also motion of air bubbles under vi- 
bration, the center of gravity rises in the case where the velocity flux predominates over 
diffusion and falls in the opposite case. 

Investiation shows that the velocity of air-bubble motion depends on the theological 
properties of the medium (~, d, p, D), the column height (H), and the vibration parameters 
(a U, a L, m). The upper acceleration (a U) has the largest effect on the liberation of the 
gas component, which occurs most intensely in the interval t~ (Fig. i), when aU~ (3-4)g and 
a L = g. This is because the impact time is optimal in the selected range of change in ac- 
celeration. The velocity of bubble motion begins to influence the process of air liberation 
when 9/d2~<i0 sec-:, where the drag coefficient of the medium is slight. In the opposite 
case, the main influence on the liberation of the gas component is that of diffusion, and 
the velocity of bubble motion is negligibly small. 

The dependence of the duration of gas-component liberation on the ratio v/d 2, the angu- 
lar velocity, the column height, and the diffusion coefficient has also been investigated. 
The time of liberation of the gas component was determined by numerical experiment on a com- 
puter when 50% of the gas phase had passed through the gas phase. The range of variation in 
the various factors was as follows: v/d 2 = 1-201 sec -I, m = 20-100 sec-1; H = 0.2-1.4 m; 
D = 10-3-10 -* m2/sec. In determining the approximating polynomial, a symmetric plan of the 
numerical experiment was used for four factors at five integer levels (--2; --I; 0; i; 2) 
[17]; the independent variables involved were expressed as dimensionless quantities normal- 
ized over the levels, and the function t being determined was expressed in seconds. 

Investigation shows that the time dependence of the quantity of gas component liberated 
is exponential in character, taking the form 1 -- exp (--pt), where p is some factor. There- 

fore, the value of the time obtained in the numerical experiment performed will be three 
times smaller than the total time for the liberation of the gas component, to an accuracy of 
• which is acceptable for practical purposes. Approximating the dependence t = f(v/d 2, 
~, H, D) by the least-squares method in the form of a complete quadratic gives 

t = 18.5634 --~ 5.1276 (u/d 2) - -  1,8524 (w/d2~ - -  1.9445~ + 5.7012H + 

+ 2,5819 (v/d ~) H " 8.2569D - -  2.9000(w/d 2) D - -  2.4242ffD,, (9) 

where the quantities with bars are dimensionless normalized parameters, and the missing terms 
of the complete four-factor quadratic are negligibly small, and may be disregarded. Analysis 
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of the approximating polynomial obtained shows that the strongest influence on the libera- 
tion of the gas component in the given region of factor space comes from diffusion, followed 
by the column height and the ratio of the kinematic viscosity of the medium to the square of 
the air-bubble diameter. The dispersion here is 673.516, the mean-square deviation is 6.488, 
and the correlational ratio is 0.945, which is acceptable for the practical use of the poly- 
nomial obtained. Note that when the range of planning for ~/d 2 is shifted downscale this 
factor has the main influence, whereas the significance of diffusion is reduced. This is be- 
cause the influence of the velocity of flux on the liberation of the gas component is in- 
creased, and the effect of the diffusion flux correspondingly decreased. 

The dependence of the diffusion coefficient on the vibration parameters, the rheologi- 
cal properties of the medium, and the column height take the form 

D : 0.438 + 0.014 (v/d 2) + 0,015 (a B. az )+0 ,18f~+  0.305H --  0,005 (v/dZ.H) + 0,096 (all) + 0.050/-~. (10) 

In the given case, the range of the factors being planned varied over the ranges: v/d 2 = 
(1_2).104 sec-1; ~U = (2-6)g m/sec2; m = 20-100 sec-~; H = (1.5-2.5) m. With the given ap- 
proximation, the dispersion is 0.028; the mean-square deviation is 0.040; the correlational 
ratio is 0.997. It follows from an analysis of Eq. (i0) that the greatest influence on the 
diffusion coefficient comes from the column height, the angular velocity, and also the prod- 
uct Hm. In addition, in the chosen range of the variable factors, the diffusion coefficient 
depends not only on the viscosity of the medium, but also to a large extent on the angular 
velocity of the vibration, the upper acceleration, and the column height. 

Thus, investigation of the diffusion of the gas component in two-phase systems allows 
the parameters of the vibrational perturbation and the theological parameters of the medium 
to be optimized for the effective reprocessing of disperse systems. 

NOTATION 

OT, density of air bubble; V, bubble volume; v, absolute velocity of bubble motion; t, 
time; g, acceleration due to gravity; a, transfer acceleration; 0, density of two-phase me- 
dium; d, diameter of air bubble; ~, dynamic viscosity; u, displacement velocity of elemen- 
tary volume of medium; D, diffusion coefficient of air bubbles along coordinate x; w, bulk 
particle concentration of gas component; wi +6t, bulk concentration of air for the i-th point 
in the preceding time step (+6t); ~t, time step; wi, wi+1 , wi_1, bulk concentrations for the 
given moment of time at the i-th, (i + l)-th, and (i -- l)-th points along the x coordinate, 
respectively; Pimax, Pimin, maximum and minimum values, respectively, of the probability of 
displacement of a gas-component particle from the i-th point for the given moment of time to 
the i-th point for the new moment; qimax, qimin, maximum and minimum values, respectively, 
of the probability of displacement of a gas-component particle from the i-th point for the 
given moment to the (i + l)-th point for the new moment; ~, kinematic viscosity. 
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SEVERAL NEW OPERATIONAL CALCULUS FORMULAS 

Yu. A. Brychkov and A. P. Prudnikov UDC 517.942.82:536.24 

One-dimensional Laplace transforms of some elementary and special functions are 
given. 

The probability of obtaining a precise analytic solution to a given problem by methods 
of the operational calculus often depends on the presence of appropriate operation formulas 
in the reference tables [i, 2]. Thus, it is important to publish addenda to these tables. 
We note that operational methods have recently been applied to the identification of thermo- 
physical properties [3]. The new operation formulas in Table i are given in double-column 
form. The left column contains the function f(x), and the right column, the Laplace trans- 
form F(p), where 

F (p) = i f (x) exp ( - -  px) dx 
0 

(Re p > 0, unless otherwise specified). The notation is standard. 

TABLE i 

I (x) F (v) 

I (1--x)n~ 

2 ch VF 

3 ~os VU 

4 ~ h g x c o s g x  

5 1 [Ei ( _  x ) - -  l n x - - C ]  
X 

6 1 [ci (x) - -  In x - -  C] 
X 

7 

8 

shi (x) 

[chi (x) - -  In x - -  C] 
/r 

1_t_~ in_, (_p) 
pn Ln 

1 1 el/,4P) erf ( i ) 
S-+S  - 

- - ~ -  p3/---g- 

1 1 / -~  1 1 1 1 
p p - [ 2p \, g 2 p J  2p . \  g 2 p / J  

L i , ( : t : @ )  R e p > l  

, 
-7-  c i .  - R.  o > 1. 

l - i -  Arth p Re p > 1 
P 

Li2 Re p :> 1 

Computing Center, ~cademy of Sciences of the USSR, Moscow. 
Fizicheskii Zhurnal, Vol. 41, No. 4, pp. 727-729, October, 1981. 
March 2, 1981. 

Translated from Inzhenerno- 
Original article submitted 

1160 0022-0841/81/4104-1160507.50 �9 1982 Plenum Publishing Corporation 


